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Project Definition: An important problem facing engineers nowadays is to locate a person
speaking in the background of many other people or with strong background noise. Hence, Di-
rection of Arrival (DOA) estimation and beamforming are necessary. The aim of this project is
to explore different methods used for DOA estimation and beamforming. Different deep learn-
ing/machine learning and signal processing methods will be inspected. For beamforming, more
complex algorithms will be investigated. Simulated audio data and real audio data will be used
to train different models/neural networks using Python. The target of this project is to accurately
estimate the DOA using a circular microphone array and develop beamforming on the same mi-
crophone configuration.
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* Investigating deep learning/machine learning methods used in DOA estimation and beam-
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* Using simulated and real data for training the deep learning models.

* Collect data by an off the shelf circular microphone array for fine tuning the model.
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* Deploying the models on a microphone array connected to a Raspberry Pi Board for real-

time DOA Estimation and Beamforming.
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e Deep Learning.
* Signal Processing.
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Abstract

This thesis introduces a Direction of Arrival (DOA) estimation algorithm using a Deep Neural
Network (DNN) for localizing a sound source in complex environments. A comprehensive in-
vestigation was conducted, employing a circular microphone array and a python-based package
to simulate various acoustic scenarios. Speech signals were recorded using the microphone array,
and a Generalized Cross Correlation Phase Transform (GCC-PHAT) matrix was computed for all
possible signal combinations. To enhance the GCC-PHAT matrix, spectral estimation techniques
were employed. Subsequently, multiple Neural Networks (NNs) were trained using these GCC-
PHAT matrices as input, with a Multilayer Perceptron (MLP) identified as the most efficient model
for estimating the DOA. Comparative evaluations against the MUItiple SIgnal Classification (MU-
SIC) algorithm and the Steered-Response Power Phase Transform (SRP-PHAT) algorithm demon-
strated superior performance by the MLP. Practical impacts of this project and potential strategies
for its direct implementation were illustrated. Finally, avenues for future research in this field are

outlined.
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Chapter 1

Introduction

Sensor arrays are an essential component in various technological applications and have witnessed
widespread adoption across diverse fields. These arrays consist of multiple individual sensors,
which work collectively to capture and analyze data from the surrounding environment. One
prominent example is microphone arrays, where multiple microphones are strategically arranged
to capture sound from different directions[1]. The utilization of sensor arrays offers numerous
advantages, including improved spatial resolution, increased sensitivity, and enhanced signal pro-
cessing capabilities. By leveraging the collective input from multiple sensors, these arrays enable
accurate and reliable measurements, leading to more robust and efficient systems in various do-
mains.

The problem of Direction of Arrival (DOA) estimation has been a topic of extensive research in
signal processing, and it has found numerous applications in various fields, including acoustics[2],
radar[3], and wireless communication systems[4]. DOA estimation is a signal processing tech-
nique that can be used in microphone arrays to determine the direction from which sound signals
are arriving. It is an important tool for spatial audio analysis and has numerous applications
in fields such as teleconferencing|[5; 6], surveillance[7], speech recognition[8; 9], and automatic
camera steering [10]. Humans can discern the direction of sound by utilizing both ears and in-
stinctively combining the diverse signals they receive[11]. Similarly, DOA estimation algorithms
examine signals from an array of microphones and analyze the discrepancies in the timing and
amplitude of sound waves to determine the source of the sound. Accurate DOA estimation can
greatly enhance the performance of audio processing systems, allowing for better noise reduction,

signal enhancement, and source localization. Therefore, DOA estimation is a crucial technology
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for improving the quality and effectiveness of audio-based applications.[2]

One of the key applications of DOA estimation is in selective auditory attention, which is
the ability to focus on one sound source while suppressing all others in the surrounding environ-
ment. Selective auditory attention has important implications for a range of applications such as
speech recognition[8], hearing aid design[12], and speaker localization[3]. In this context, DOA
estimation plays a critical role in providing the necessary spatial information to enable selective
auditory attention. Therefore, this thesis aims to investigate the state-of-the-art methods in DOA

estimation[13].

1.1 Motivation

The estimation of DOA is an essential task in many signal processing applications. Nevertheless,
numerous DOA estimation algorithms necessitate the inclusion of additional algorithms, thereby
increasing the number of stages prior to obtaining a DOA estimate. Consequently, if an error oc-
curs in one stage, it can greatly impact the accuracy of the final DOA estimation. Furthermore,
traditional DOA estimation algorithms heavily rely on a multitude of assumptions that simplify the
problem. However, these assumptions may not hold valid in various real-life scenarios, potentially
limiting their applicability and accuracy[14; 15]. Therefore, the search for accurate DOA estima-
tion algorithms continues. Fortunately, the emergence of Deep Learning (DL) has revolutionized
the field of signal processing by allowing the extraction of complex and non-linear patterns di-
rectly from data. Deep Neural Networks (DNNs) can provide end-to-end models that map input
data to the output target, eliminating the need for multiple intermediate estimation algorithms. As
a result, researchers have turned to DNNs for DOA estimation, which promises a more robust and

efficient solution to this problem.

The present study is driven by a genuine inquiry: Can DNNs be effectively employed for
estimating the DOA of speech signals? Furthermore, if such utilization is feasible, what level of
precision can be achieved? This research endeavor is specifically designed to comprehensively

investigate these pivotal queries and provide well-substantiated responses.
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1.2 Aim & Objective

This research endeavor aims to explore the feasibility of utilizing DNNs for the estimation of DOA
in circular microphone arrays. This investigation will involve the use of simulation tools to acquire
realistic data, as DNNs’ learning processes heavily depend on data for training. Additionally,
feature extraction techniques will be scrutinized to accentuate significant features in the data.
Multiple DL models will be evaluated and compared to identify an optimal model. Ultimately,

a data pipeline will be proposed for DOA estimation in circular microphone arrays via a DNN.

1.3 Thesis Overview

In chapter 2, a comprehensive background will be presented, covering the fundamental knowledge
necessary for this thesis. Chapter 3 will delve into the employed methodology, detailing the step-
by-step process that ultimately leads to the proposal of an efficient data pipeline for achieving
optimal DOA estimation. The subsequent chapter, chapter 4, will focus on the results and analysis,
extensively examining the conducted experiments and the associated trade-offs made to attain the
most effective model. Chapter 5 will shed light on the impact and potential exploitation, providing
an overview of the project’s current stage within the development cycle and exploring its potential
implications. Finally, chapter 6 will serve as the conclusion chapter, highlighting the key findings,
summarizing the thesis, and discussing potential future avenues of research and development for

this project.






Chapter 2

Background

This chapter sets the foundation for the forthcoming thesis by outlining the context of the pri-
mary research themes. Initially, an overview of the algorithms employed for DOA estimation is
presented. The discussion also touches on power spectral estimation methods, with a particular
emphasis on Bartlett’s approach for spectral estimation. Following that, a background in DL is

presented, with an emphasis on the DL methods deployed in previous studies for DOA estimation.

2.1 DOA Estimation Algorithms

There are numerous signal processing techniques available for estimating the direction of arrival
of a speech signal from a microphone array. These methods have been studied and refined over
the years, leading to significant advancements in the field of speech signal processing. Certain
DOA estimation algorithms hinge on the detection of the Time Difference of Arrival (TDOA),
which concentrates on the difference in signal arrival time between two receivers. Another popular
method is beamforming, which involves applying filter weights to the signals captured by each
microphone in a directional pattern. An alternative widely used technique is the sub-space method,

which leverages covariance matrices to estimate the DOA.

2.1.1 Time Difference of Arrival Methods:

TDOA is a technique used to measure the difference in arrival time of the signal at two or more
receivers. TDOA can be used to estimate the position of a sound source in a room or space. The

equations below provide a model for signals received by two microphones, x; (¢) and x,(z), from a
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source transmitting a speech signal, s(7), that travels through a noisy channel in free space, without

taking multipath effect into account.

xl(t):Als(t—tl)—i—nl(t) 2.1
x2(1) = Axs(t —12) +ma(t) (2.2)

where A| and A, represent the amplitude attenuation, #; and #, represent the propagation delay,
and n; and n; represent the noise. The noise is assumed to be stationary, random, and uncorrelated
with the signal s(¢). The two noise terms, n(t) and n(t), are also assumed to be uncorrelated.

Assuming that #; < 7, eq. (2.3) can be used to represent the TDOA based on the delay terms.

TDOA =t —1 (2.3)

An alternative definition of the TDOA that expresses it in relation to the distance between the
source and each microphone is demonstrated in eq. (2.4). This is also visually represented in
fig. 2.1.

di  d,

TDOA=— = 2.4)
14 v

where d; and d; represent the distance between the source and microphone, and v denotes the

signal’s speed in the give medium.

\'b ircular Mlcrophelle..
', Array |

Figure 2.1: Illustration of the different line-of-sight paths of an acoustic signal travelling through
a medium from a sound source to multiple microphones in a circular microphone array.



CHAPTER 2. BACKGROUND 7

Generalized Cross Correlation:

In order to accurately estimate the TDOA, a method that is impervious to noise and interference
must be employed. The Generalized Cross Correlation (GCC) method is a reliable choice, given
that noise is typically assumed to be uncorrelated [16]. To further improve the Signal-to-Noise
Ratio (SNR), a weighting function was introduced in the GCC calculation [17], thereby modifying

the definition of GCC to conform to eq. (2.5).

Ruw =7 {Wel)Gr () | 2.5)

where Ry, ., represents the GCC between signal x; and signal x;, .# ~! represents the inverse
Fourier transform, f represents the frequency, , ( f) represents the weighting function, and Gy, , (f)

represents the cross spectral density between signal x; and signal x;.

The Phase Transform (PHAT) weighting function, as detailed in eq. (2.6), was identified as a

robust method for estimating TDOA due to its peak value occurring at the TDOA value [17].

ve(f) = ‘le;(f)‘ (2.6)

TDOA = argmax V0, (T) 2.7)
T

The estimation of TDOA for various combinations of microphones, in conjunction with the geom-

etry of the microphone array, provides an opportunity to estimate the DOA of the signal.

Hyperbolic Position Location Estimation:

Hyperbolic Position Location Estimation is a technique that is usually used in wireless commu-
nications to determines the position of a mobile device. In order to perform Hyperbolic Position
Location Estimation, a two-stage approach is utilized. Firstly, TDOA between transmitters is es-
timated via TDOA estimation techniques. These estimated TDOAs are then translated into range
difference measurements between base stations, which results in a set of nonlinear hyperbolic
equations. The second stage involves the utilization of efficient algorithms to achieve a clear

solution to these nonlinear hyperbolic equations[18]. The two dimensional Euclidean distance
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equation is used to define the distance, as shown in eq. (2.8), between the i-th source and receiver.

Ri= /(X —x + (i —y)? 28)

where the source location is given by (x,y), and the coordinates of the i-th source is given by
(X;,Y;). Compared to other methods, Chan’s method [19] outperforms them significantly in terms

of its ability to accurately locate multiple acoustic sources within a room[20]. Let

Rii =Ri—R;
Xi1 =X~ X (2.9)
Yii=Yi—"

By applying Chan’s method [19] to the scenario where three receivers are present, two TDOA
values,x and y, are generated, which can be solved with respect to R1. The resulting solution is

represented by eq. (2.10).

X X1 VORI Ry 1 [R5, —K+K
= — X R+ 3 ' (2.10)
y X531 Y3 R3 1 R§71 —K3+K;
where
Ky =X 471}
Ky =X;+Y; 211
Ky =X;+Y¢

Substituting eq. (2.10) into eq. (2.8) with i = 1 results in a quadratic equation in terms of R;.
Solving the quadratic equation results in a positive root that when substituted back in eq. (2.10)

gives the solution to the equation [19] which represents an estimation of the source location.

2.1.2 Beamforming Method:

Beamforming, also known as spatial filtering, is a widely-used signal processing method utilized in
sensor arrays to facilitate directional transmission or reception of signals. The technique involves
a combination of elements in an antenna array to achieve constructive interference for signals

arriving at specific angles and destructive interference for signals arriving at other angles[21].
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Beamforming can be used to estimate the DOA. It involves applying filter weights to the signals
collected by each microphone in the array in a directional pattern. The DOA is determined based

on the direction in which the filter weights are most effective in reconstructing the desired sound.

Delay-and-Sum Beamformer:

The Delay-and-Sum beamforming technique, as shown in fig. 2.2, involves the application of a
delay and an amplitude weight to the signal captured by each sensor in an array, followed by sum-
mation of the resulting signals. This process enables steering the array’s direction of observation
towards the source by adjusting the delays. Additionally, the weights assigned to each sensor serve
as gain factors that enhance the shape and diminish the sidelobe levels of the beam obtained from
the received signals [22]. The output signal of the delay-and-sum beamformer can be computed
using eq. (2.12).

M
2t) =Y Wi ym(t — An) (2.12)
m=1

where z(f) represents the output signal from the delay-and-sum beamformer, M represents the
number of sensors, w,, represents the weight for the m — th sensor, y,, represents the received
signal by the m — th sensor, and A,, represents the delay for the m —th sensor. The delay-and-sum
beamforming technique can effectively determine the DOA of a signal by measuring the strength
of the signal at all possible arrival angles and selecting the angle that results in the highest power
peak. This methodology is commonly known as the Steered-Response Power Phase Transform

(SRP-PHAT) algorithm [23].

sensore |
- Al
v
sensore 2
- A2
4
w
sensore M

AM

Figure 2.2: Visualization of the delay-and-sum beamformer.
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Capon’s Minimum Variance Beamformer:

The Capon’s Minimum Variance method aims to reduce the effects of undesired interference in
the output power eq. (2.14) of a sensor array, while simultaneously preserving a consistent gain,
typically set to unity, in the desired direction[24]. The output of the sensor array can be expressed
mathematically as shown in eq. (2.13).

y = whx (2.13)

where y represents the output, w represents the weight matrix, H represents the Hermitian trans-

pose, and x represents the signal received by the sensors.

1

Frarn(O) = GG Taf0)

(2.14)

where P represents the output power, and R represents the covariance matrix.
The optimal weights are chosen with the goal of minimizing the output power of the system,
while simultaneously preserving a unity gain in the desired direction. This relationship can be

mathematically represented by eq. (2.15).
min{w" Rw} subject to wHa(0)=1 (2.15)

where a(0) represents the steering vector.
The optimum weights are defined as eq. (2.16).

R 'a(0)

- af(0)R1a(0) (2-16)

The DOA of the desired signal is estimated from the location of the maximum output power of the

beamformer, which corresponds to the direction of the desired signal [22].

2.1.3 Subspace Methods:

Subspace-based techniques are commonly used to estimate the DOA of signals by exploiting the
eigenspaces of the covariance matrix. These methods typically consist of three main steps: (1)
estimation of the covariance matrix, (2) computation of the eigenvectors based on the covariance

estimates, and (3) estimation of the DOA, which is dependent on the specific subspace method

10
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used for DOA estimation [15].

MUSIC Algorithm:

MUItiple SIgnal Classification (MUSIC) is a type of subspace DOA estimation method that pro-
vides an estimate of both the number of signals and their DOA. It is essential that the number
of signal sources is fewer than the number of receivers, which is a common assumption in many
DOA estimation algorithms. The MUSIC algorithm operates by decomposing the covariance ma-
trix into two mutually orthogonal subspaces: the signal subspace and the noise subspace [25]. The
algorithm then generates the MUSIC pseudospectrum, which can be represented mathematically

by eq. (2.17).
1
Hy,UHa(0)

Pyusic(0) = a(0) (2.17)

where a(0) represents the steering vector, and U, represents the noise eigenvectors matrix. The

estimated DOA is indicated by the peak(s) observed in the pseudospectrum.

2.2 Power Spectral Estimation

In contemporary signal processing algorithms, the utilization of essential statistical metrics, such
as probability density function, autocorrelation function, joint probability function, or power den-
sity function, is commonplace. Regrettably, these metrics often elude practical signals, posing a
significant challenge. Consequently, spectral estimation emerges as a pivotal pursuit, aiming to
derive an accurate estimation of a signal’s power spectral density through a sequential analysis of
time samples[26]. In this section, we focus our attention on the elucidation of Bartlett’s method,

alternatively known as the periodogram method, within the context of spectral estimation.

2.2.1 Bartlett’s Method

Bartlett’s method involves segmenting a lengthy signal sequence into K consecutive non-overlapping
blocks of equal length M. Within each block, periodograms are computed, which are essentially
the Fourier Transforms of the signal’s correlation. This correlation-based Fourier Transform holds
significance as it embodies the power spectrum, as stated by the Weiner-Khintchin theorem [27].
To obtain a comprehensive Bartlett power spectral estimate, the resulting periodograms are sub-

sequently averaged together. This methodology provides a reliable means of characterizing the

11
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power distribution across the signal’s frequency domain[28].

The periodogram can be calculated using eq. (2.18)
Pila(f) = 7 {Ha) 2.18)

where PU) represents the periodogram of the i-th block, .% represents the Fourier transform, and
ril;),xZ represents the cross-correlation function between signal x; and signal x,. The Bartlett power

spectral estimate can be calculated using eq. (2.19)

1 K—1

Pl o) =% ¥ B/ (2.19)

i=0

where P)ff 1, (f) represents the Bartlett power spectral estimate, and K represents the number of

blocks.

2.3 Deep Learning:

DL is a subset of machine learning that uses Artificial Neural Networkss (ANNs) to process com-
plex datasets. The ANNs are dynamic systems that are nonlinear and adaptive in nature, com-
prising a vast number of interconnected neurons. In DL, the ANNs consist of multiple layers,
allowing the network to learn complex features and patterns from the input data. The DL models
are designed to learn from large datasets and can be used for a variety of applications, includ-
ing speech recognition[29], natural language processing[30], image recognition[31], and image

segmentation[32].

Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN) are two popular DL
architectures used in speech applications. MLPs are feedforward Neural Networks (NNs) that
perform non-linear transformations on the input signal, and they are well-suited for solving clas-
sification problems. CNNs consist of multiple layers of convolutional filters and pooling layers
that learn local patterns in the input signal. CNNs have shown excellent performance in various
speech-related tasks, such as speech recognition, speaker identification, and voice activity de-
tection. DL methods have the potential to improve the accuracy and efficiency of speech signal

processing, leading to better performance in speech-related applications[33].

12



CHAPTER 2. BACKGROUND 13

2.3.1 Deep Learning for Direction of Arrival Estimation:

Recent work has shown promising results in DOA estimation using DL architectures. For exam-
ple, this paper [34] proposed a CNN-based method for DOA estimation. The authors showed that
their method outperformed traditional DOA estimation methods with more robustness and lower
computational cost. Similarly, this paper [35] presented an MLP-based method for DOA estima-
tion by extracting features from GCC vectors. The authors showed that their method achieved

state-of-the-art performance on both simulated and real data.
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Chapter 3

Methodology:

In the preceding chapter, we provided an overview of the background and context of DOA estima-
tion. In this current chapter, we delve into the methodology that has been employed and devised
for this particular project. Our focus will be on elucidating the data collection approach, followed
by an exploration of the feature extraction technique. Furthermore, we delve into the DL methods
that have been employed in this study. To culminate, we propose a data pipeline that harnesses the

power of a DNN for accurately estimating DOA.

3.1 Data Collection:

In order to effectively learn complex patterns, DL methods require a significant amount of data.
To ensure that this data is relevant to our particular setting, it is important that it be collected in
a manner similar to that of the ReSpeaker 6-Mic Circular Array, which is an off-the-shelf cir-
cular microphone array consisting of six microphones. The sampling frequency was chosen to
be 16kHz, which is four times the frequency bandwidth of speech signals, in order to accurately
sample speech signals and apply digital delays without sacrificing data [7]. Despite examining
open-source data, we were unable to locate any datasets that meet these specifications, necessitat-

ing the collection of data through alternative means.

3.1.1 Sound Recording:

In order to collect a large number of sound samples, a software must be used for sound recording.

PyRoomAcoustics (PRA) is a python-based open-source package that facilitates the simulation of
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16 3.1. DATA COLLECTION:

room-like environments, microphone arrays, and sound sources in order to record acoustic signals.
The package offers efficient estimation of Room Impulse Response (RIR), as depicted in fig. 3.2,
and enables the propagation of acoustic signals to be simulated between sources and receivers. The
environment can be represented through the specification of various parameters [36]. To collect
data, PRA was employed to simulate rooms according to the specifications outlined in table A.1,
with the source location specified as shown in table A.2. Fig. 3.1 depicts the appearance of the

simulated room.
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Figure 3.2: Visualization of a RIR that was estimated for an environment using PRA.
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There are two common methods that are widely used to simulate acoustic signals, which are:
(1) ray tracing method (2) image source model. Ray tracing assumes that the movement of sound
within a given environment occurs in the form of “rays”. This method can provide a detailed and
accurate simulation of the acoustics of a space, taking into account factors such as reflections,
diffraction, and absorption. On the other hand, the image source model is a simpler approach
that assumes that sound waves propagate directly from a sound source to a listener, and that any
reflections are accounted for by virtual “image sources” that are created by the reflections of
the original sound source. This method is less computationally intensive than ray tracing. The
ray method provides a more realistic representation of acoustic signals at the cost of being more
computationally expensive [37]. A hybrid method, that is available in PRA, was used to efficiently
simulate the speech signals using PRA [38]. Fig 3.3 shows a speech signal that was recorded by

one of the microphones in the array using the hybrid method.
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Figure 3.3: Representation of a speech signal that was recorded using PRA.

3.2 Feature Extraction:

In order to optimize DL models’ ability to learn from data, it is crucial to represent the data in
a manner that accentuates pertinent features. This approach can lead to enhanced performance
without the need for deeper NNs. Two techniques for data representation include utilizing raw
signals from microphone arrays, as demonstrated in [39], and utilizing Fourier transforms to com-
pute the Short-Time Fourier Transform (STFT), as shown in [40], of time domain data as features.
However, these techniques do not effectively spotlight critical information in the recorded signals

for DOA estimation. An alternative approach, explained in chapter 1, is to employ the GCC be-
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18 3.2. FEATURE EXTRACTION:

tween multiple microphones. This method emphasizes TDOA information, which is relevant to
DOA estimation. In addition, this paper [17] proposes using GCC-PHAT, which is more robust
and focuses primarily on TDOA. Consequently, the GCC-PHAT method will be utilized for fea-
ture extraction. Fig 3.4 shows a comparison between a Cross Correlation (CC), that has a its peak
with a magnitude of 1.0, and GCC-PHAT for the same pair of signals. Notably, the GCC-PHAT
exhibits a more precise representation of TDOA as evidenced by a distinct peak at the TDOA
value. Conversely, while the CC also exhibits a peak at the same value, it is accompanied by mul-
tiple peaks throughout the sequence, which dilutes the emphasis on the TDOA value. This visual

analysis underscores the superior accuracy of the GCC-PHAT method in accurately capturing the

TDOA.
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Figure 3.4: Visual representation of a comparison between normalized CC and GCC-PHAT.

3.2.1 GCC-PHAT Matrices:

The computation of the GCC-PHAT between a pair of microphones produces a correlation se-
quence, which can be represented as a vector. By computing all unique GCC-PHAT combinations
between the six microphones, a total of 15 unique vectors can be obtained. Arranging these vec-
tors in a matrix form results in a GCC-PHAT matrix, as shown in fig. 3.5, that can be interpreted
as an image. This image, as illustrated in fig. 3.6, can be employed as a feature to represent the
signals captured by the microphones. The length of the GCC-PHAT vector can be determined

using eq. (3.1).
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Leec—paar =2%N — 1 3.1

where Lgcc—prar represents the length of the GCC-PHAT sequence, and N represents the signal’s

length.
GCC1 GOC2 GCC15 GCC1 GCC2 GCC15
1 i 1 1 2 1
3 3 3 3 3 3
R
N-1 N-1 MN-1 N-1 N-1 N-1
N N N N N N

Figure 3.5: Illustration of stacking GCC-PHAT vectors to create a matrix.
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Figure 3.6: Illustration of representing the GCC-PHAT matrix as an image

3.2.2 Cross Spectral Density Estimation:

The GCC-PHAT method involves the calculation of cross spectral density between two signals. To
enhance the accuracy of this estimation, cross spectral density estimation methods can be applied.
However, these methods require the assumption that the process is ergodic. In the case of speech
signals, this assumption holds true for time frames of up to 20ms [41]. As a result, spectral esti-
mation methods can be used to improve the representation of the GCC-PHAT sequence. Bartlett’s

method, as discussed in section 2.2.1, can be employed to estimate the sequences of GCC-PHAT,
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using the parameters specified in table 3.1.

Table 3.1: Parameters used for spectral estimation method.

H Parameter Value H

Number of Blocks 10
Number of Samples per Block 20

3.3 Deep Learning:

To effectively harness the potential of data-driven learning, the utilization of DL techniques is
crucial. However, the initial step necessitates framing the problem at hand within the context of
DL. Subsequently, employing a DNN is imperative to approximate the DOA based on the provided
input data. Moreover, establishing appropriate metrics to proficiently assess the performance of

DL models holds significant importance.

3.3.1 Problem Definition:

This study examines the problem of DOA estimation using two distinct approaches. The first
approach is to treat it as a classification problem, with the predicted output being one of a finite
set of pre-defined classes. The second approach is to treat it as a regression problem, with the
predicted output being a continuous value. The input for both methods is the GCC-PHAT Matrix

discussed in section 3.1, and the data is labeled according to the chosen approach.

Classification:

In the classification task, the DOA is discretized into a predetermined number of classes, and
input matrices are labeled accordingly. Sparse-categorical representation is utilized instead of
one-hot encoded categories to minimize memory space requirements, as shown in table A.3. In
the case of sparse encoding, categories are represented by a single numerical value, whereas one-
hot encoding utilizes binary values where O indicates that the data does not belong to the category
and 1 signifies that the data point belongs to the respective category. The output layer of the
NN is composed of the Softmax function to represent the output as probabilities of the various
DOA classes. The predicted class is the one with the highest probability. The Softmax function is

described in eq. (3.2).
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6(@i=x—— (3.2)

j=1€7
where o represents the Softmax function, 7 represents the input vector to the Softmax function,

z; represents the i-th element of the input vector, and K represents the total number of elements in

the input vector.

Regression:

In the regression method, the NN generates two outputs that represent a unit vector on the x-y
(2 dimensional) plane pointing towards the source projection. The NN aims to estimate the two
components of this unit vector, which is a continuous value ranging from -1 to 1. Notably, the
network output is not constrained to have a magnitude of 1. The estimated vector components
are subsequently utilized to compute the azimuth angle of arrival. To enable comparison with
the classification method, a customized evaluation function is developed. This function divides
the plane into classes analogous to the classification method and calculates the accuracy based
on the computed angle. This regression approach is inspired by the hyperbolic position location
estimation method that was discussed in section 2.1.1. The advantage of using the regression
method is that the DOA is a continuous value, and representing it using continuous output is
desirable. The use of unit vectors is preferred over the angle of arrival since the latter does not
accurately represent angles. For instance, the difference between 0 degrees and 359 degrees is only
1 degree, but representing them as such yields a difference of 359, which may adversely affect the

DNN’s performance.

3.3.2 DNN Architictures:

Various DNN architectures are used to estimate the DOA. Firstly, a MLP architecture inspired by
the methodology presented in [35] is utilized. The parameters of the selected MLP are detailed in
table 3.2. Secondly, a CNN inspired by the approach adopted in [34] is implemented. The param-
eters of the selected CNN are summarized in table 3.3. The NN architectures employ the Rectified
Linear Unit (ReLU) activation function for each Hidden Layer (HL), as it is both computationally

efficient and robust, as demonstrated in [42].
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Table 3.2: Parameters of the selected MLP-based DNN

| Layer  Values ||
| I"HL 128 nodes ||

Table 3.3: Parameters of the selected CNN-based DNN

H Layer Value H
Convolutional Layer 6 filters
Flatten Layer -

Dense Layer 84 nodes

3.3.3 Models Evaluation:

Evaluating various DL models is essential to determine their relative performance. The DOA
estimation task at hand can be categorized as a classification problem, and as mentioned earlier,
the regression approach can also be utilized to predict categorical classes after computing the angle
of arrival. Hence, evaluation of the regression approach can be carried out in a manner similar to
classification tasks. Two methods for evaluating the DL models will be employed: accuracy and

confusion matrix.

Accuracy:

In classification tasks, assessing the effectiveness of a DL model is commonly done by measuring
its accuracy. This metric quantifies the percentage of accurate predictions made by the model. To
be more specific, accuracy is computed by dividing the number of correctly classified instances by

the total number of instances.

Confusion Matrix:

In order to assess the accuracy of a classification model, a confusion matrix can be used. This
table compares the predicted and actual classifications of a model by mapping them onto rows and
columns, respectively. Each cell of the matrix represents the number of instances predicted to be-
long to a particular class, with the actual class of those same instances given by the corresponding

row. An illustration of a 2x2 confusion matrix is depicted in fig. 3.7.
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Figure 3.7: Visualization of a 2x2 confusion matrix for a binary classification model

3.4 Data Pipeline:

Upon comprehensive evaluation of the methodology using diverse parameters and architectures,

as extensively elaborated in chapter 4, a well-defined data pipeline emerges. Figure 3.8 showcases

an optimal data pipeline, offering an efficient framework to estimate the DOA for speech signals

using a circular microphone through the utilization of a MLP. Figure B.1 illustrates the identical

data pipeline, albeit on a larger scale.
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Chapter 4

Results and Analysis:

The objective of this chapter is to present the outcomes of the conducted tests within this project
and analyze them to elucidate the decision-making process. Initially, the chapter will delve into
the procedure employed for selecting the optimal parameters for the feature extraction method.
Subsequently, it will proceed to compare multiple DNNs in order to identify the most suitable
one for accurately estimating the DOA. Furthermore, the performance of this chosen DNN in
addressing both classification and regression tasks will be assessed. Finally, a comparative analysis
will be conducted to evaluate the performance of the selected DNN in comparison to established

DOA estimation algorithms.

4.1 Parameters Selection:

Before evaluating the DNN models, it is important to tune certain parameters. Two examples of
such parameters are the length of the sampled signals used to compute the GCC-PHAT and the

number of blocks used for spectral estimation.

In order to conduct a fair comparison, a two HL MLP with 128 nodes per HL for the 6 classes
DOA estimation classification task was used. Early stopping, with parameters shown in table 4.1,
was used to train the models. For this task, only accuracy will be analyzed to select the optimum
parameters. Table 4.2 provides a summary of the number of samples used for training, testing, and
validation sets. These samples were selected randomly from the simulated signals. The parameters

used to train the models are demonstrated in table 4.3.
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Table 4.1: Early stop parameters for parameters selection process.

| Parameter Value |
Monitor Validation Accuracy
Minimum Change 0.001 (0.1%)
Patience 2

Table 4.2: Number of samples used for different sets for parameter selection.

H Set Number of Samples Percentage H
Train 33800 80%
Validation 4225 10%
Test 4225 10%

Table 4.3: Parameters used for models training.

H Parameter Value H
Optimizer Adam
Learning Rate 0.001
Loss Function Sparse Categorical Cross Entropy
Batch Size 32

4.1.1 GCC-PHAT Length:

In order to determine the optimal signal length for optimal performance, it is crucial to conduct
testing. To achieve this goal, three different signal lengths, namely 10, 20, and 30, were tested.
The results on the test set were then recorded in table 4.4. According to the table, signals of length
30 samples provided the most favorable outcomes. The rationale behind this finding is that when
the sampled signal is longer, the GCC-PHAT values are more likely to accurately represent the

TDOA, which, in turn, will help the DNN to more precisely estimate the DOA.

Table 4.4: Recorded accuracy on test set for different lengths of sampled signals.

H Signal Length  Test Accuracy H

10 79.74%
20 86.84%
30 88.38%

As previously noted, the length of the GCC-PHAT sequence is determined by eq. (3.1), which
implies a trade-off, that can also be seen in table 4.4, between correlation length and accuracy.
After careful evaluation, it was determined that a signal length of 20 samples would be more

favorable than a signal length of 30 samples. This is because using a signal length of 20 samples
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would decrease the GCC-PHAT sequence length by 20 samples with only a 1.54% decrease in

performance.

4.1.2 Number of Blocks for Spectral Estimation:

Determining the optimal number of blocks for spectral estimation is crucial to accurately estimate
TDOA, which ultimately affects the performance of the DNN. To identify the best value, we
examined three block sizes: 1, 5, and 10. It’s worth noting that the blocks are non-overlapping and
do not exceed 20ms, implying that the signal can be assumed to be ergodic[41]. The outcomes on

the test set are reported in table 4.5.

Table 4.5: Recorded accuracy on test set for different number of blocks used for spectral
estimation.

H Number of Blocks Test Accuracy H

1 86.84%
5 92.14%
10 93.33%

According to the results presented in table 4.5, the optimal number of blocks to use for spectral
estimation is 10. It might be assumed by the reader that using 10 blocks for spectral estimation
would increase the computational complexity, but this is not very accurate. This is because the
10 blocks will be used to estimate a single GCC-PHAT sequence, resulting in a similar length to
using only one block. Additionally, these calculations will only be performed once and will not
add more computations to later stages. Therefore, it has been decided that 10 blocks will be used

for spectral estimation.

4.2 DNNs Selection:

There is a vast range of possibilities when it comes to structuring a deep neural network. Therefore,
it is essential to explore various architectures with different depths and hyperparameters to identify
a suitable and optimal model for the DOA estimation task. To achieve this, we will once again
utilize the classification task to evaluate different models based on MLP and CNN. For this part,
the only metric that was used to evaluate the models is accuracy. In this section, three values for

the number of classes, and their respective angle ranges were considered. These values are shown
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in table 4.6. Early stopping was employed using the same set of parameters outlined in table 4.1.
The training parameters, as outlined in table 4.3, were also utilized in this task. Furthermore,

table 4.7 details the number of data points used for training, testing and validation.

Table 4.6: Number of classes and angle ranges used for DNN selection process.

H Number of Classes Angle Range H

6 60°
12 30°
36 10°

Table 4.7: Number of samples used for different sets for DNN selection.

H Set Number of Samples Percentage H
Train 114880 80%
Test 14360 10%
Validation 14360 10%

4.2.1 MLP-Based DNNs:

In order to determine the optimum MLP architecture, three kinds of MLPs with varying depths
were tested, which are outlined in table 4.8. A visual depiction of the three MLP architectures is

provided in fig. 4.1. The results on the test set are reported in table 4.9.

Table 4.8: Number of nodes used per HL in a MLP DNN, where - represents O nodes.

| DNN NodesinHL 1 Nodesin HL2 NodesinHL3 ||

MLP-1 128 - -
MLP-2 128 64 -
MLP-3 128 64 64

Table 4.9: Recorded accuracy for different MLP based architectures.

H DNN 6classes 12classes 36 classes H
MLP-1 95.81% 90.54% 78.29%
MLP-2 95.57% 87.98% 79.64%
MLP-3 95.77% 89.46% 78.93%

As observed from the results presented in table 4.9, the performance difference between var-
ious architectures for the same task is not significant. This indicates that in some applications,
deeper NNs may not necessarily result in better performance. Therefore, a single HL. MLP is

selected as it performs well without the need for increased depth.
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Figure 4.1: Visualization of different MLP architectures used for DNNs selection process.

4.2.2 CNN-Based DNNs:

In order to determine the most effective CNN-based DNN architecture, three different architec-
tures were tested. All architectures have convolutional layers at the beginning followed by fully
connected layers. The specifications for the CNN-based DNNs are provided in section 4.2.2.
Table 4.11a, table 4.11b, and table 4.11c show the specifications for the first, second, and third
CNN-based DNNs, respectively. The three distinct architectures are depicted in fig. 4.2. The

performance of the different models is summarized in table 4.12

Table 4.10: Parameters used for convolutional layers in CNN-based DNNS.

’ ‘ Parameter Value ‘ ‘
Convolution kernel size 3x3
Convolution strides size 1x1

Pooling Type Max Pooling
Pooling kernel size 2x2
Pooling strides size 1x1

Table 4.11: Parameters used for CNN-based DNN architectures.

H Layer Type Value H
Convolutional Layer 6 filters
Flatten Layer -
Dense Layer 84 nodes

(a) CNN-1
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| Layer Type Value ||
Convolutional Layer 6 filters
Pooling Layer -
Convolutional Layer 16 filters
Pooling Layer -
Convolutional Layer 120 filters
Flatten Layer -
Dense Layer 84 nodes
(b) CNN-2
H Layer Type Value H
Convolutional Layer 6 filters
Pooling Layer -
Convolutional Layer 16 filters
Pooling Layer -
Convolutional Layer 120 filters
Pooling Layer -
Convolutional Layer 240 filters
Pooling Layer -
Convolutional Layer 240 filters
Flatten Layer -
Dense Layer 84 nodes

(c) CNN-3

Table 4.12: Recorded accuracy for different CNN-based architectures.

| DNN

6 classes 12 classes 36 classes H

CNN-1
CNN-2
CNN-3

95.13%  90.68%
94.46% 89.76%
93,39% 86.09%

79.41%
77.99%
73.48%

According to the results presented in table 4.12, it is evident that the best performance is

obtained using only one convolutional layer. Hence, the first CNN-based DNN (CNN-1) was

selected for further analysis. The possible reasons behind this observation will be discussed in

section 4.2.3.

4.2.3 Selected DNN:

Based on the results obtained from various tests conducted on different DNNSs, it was surprising

to observe that the single HL. MLP exhibited satisfactory performance while utilizing significantly

fewer parameters than the other DNNs. The reason for the better performance of the single HL

MLP could be attributed to its comparison of the exact position in the input data, as opposed to the

CNN that searches for particular patterns in the data using multiple filters without paying much
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Figure 4.2: Visualization of different CNN architectures used for DNNs selection process

attention to the specific location. As the input data in this study were correlation sequences, the
exact positions contained information that facilitated better DOA estimation by the NNs. This
may not be the case for very deep CNN-based DNNs due to receptive fields in CNNs, which is a
topic that is beyond the scope of this study. Additionally, deeper NNs require more parameters,
whereas our model needs to have fewer parameters. Therefore, the single HL. MLP was selected
for further analysis.

It is worth mentioning that when spectral estimation is not utilized , the CNN with five con-
volutional layers exhibits superior performance compared to other networks. This finding could
be attributed to the fact that the absence of spectral estimation methods doesn’t enhance the sig-
nificant features of the GCC-PHAT sequences. This underscores the significance of employing
convolutional layers, that utilize filters to extract features from the input data, especially when

feature extraction methods employed are imprecise and obscure.
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4.3 Classification vs. Regression

Once a model has been selected, it becomes necessary to compare its performance in solving
different tasks, namely regression and classification, as detailed in section 3.3.1. To ensure a robust
comparison, it is essential to utilize both accuracy and confusion matrix as evaluation metrics to
gauge the model’s efficacy across these tasks. As highlighted in section 3.3.3, it is important
to note that the evaluation of the regression task can be approached in a similar manner to that
of the classification task. The number of classes used for these tasks are displayed in table 4.6.
Furthermore, the number of data points utilized for the train, test, and validation sets are presented

in table 4.7.

4.3.1 Classification Task

The classification task, as previously elucidated, entails the categorization of the input GCC-PHAT
matrix into distinct DOA classes. In pursuit of this objective, the selected MLP, as detailed in
section 4.2.3, was employed. Early stopping was used with the same set of parameters shown in
table 4.1. Table 4.13 showcases the accuracy achieved by the MLP across diverse tasks, while

fig. 4.3 depicts the corresponding confusion matrices pertaining to each classification task.

Table 4.13: Recorded accuracy for the classification task using the chosen MLP.

H Number of Classes Accuracy H

6 95.27%
12 90.61%
36 80.52%
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Figure 4.3: Confusion matrices for each classification task using the chosen MLP.

4.3.2 Regression Task

In the regression task, the focus lies on training the model to make predictions of the Cartesian

unit vector that denotes the direction towards the source on the x-y plane. The specific training

parameters employed for this purpose are presented in table 4.14. To ensure optimal model per-

formance, early stopping is implemented and the relevant parameters are outlined in table 4.15.
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Table 4.14: Parameters used to train models for the regression task.

H Parameter Value H
Optimizer Adam
Learning Rate 0.001
Loss Function Mean Squared Error
Batch Size 32

Table 4.15: Early stopping parameters used to train models for the regression task.

’ ‘ Parameter Value ‘ ‘
Monitor Validation Loss
Minimum Change 0
Patience 3

In order to facilitate a comparative analysis between the regression and classification models,
the predicted unit vector obtained from the regression model serves as the basis for computing the
angle of arrival. Subsequently, this angle is utilized to estimate the corresponding DOA class. It
is important to note that a single trained model is employed for this purpose, and its outputs are
utilized multiple times to compute distinct accuracies for each task. The resulting accuracies for
the classification tasks are presented in table 4.16. Moreover, fig. 4.4 visualizes the associated

confusion matrices pertaining to these classification tasks.

Table 4.16: Recorded accuracy for the regression task using the chosen MLP.

H Number of Classes Accuracy H

6 91.68%
12 82.26%
36 63.21%
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Figure 4.4: Confusion matrices for each classification task using the chosen MLP.

4.3.3 Discussion:

The comparative analysis presented in table 4.13 and table 4.16 reveals noticeable discrepancies
in the performance of the regression MLP when faced with the scenarios involving 12 and 36
classes. Upon examination of the confusion matrices for both the regression and classification

MLPs, it becomes evident that the models exhibit commendable performance, as the instances of
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incorrect predicted DOA predominantly correspond to the adjacent class. This indicates that if an
error occurs in the predicted DOA, it is likely to be in close proximity to the actual DOA of the
signal.

While the classification MLP outperforms the regression MLP significantly for high resolution
scenarios, it is important to emphasize that the regression model only necessitates a single training
session as it predicts a unit vector. This distinctive characteristic empowers the system to adapt
to changes and dynamically adjust the number of DOA estimate classes, all without the need for

multiple DNNs or training multiple models.

4.4 Comparing DNN with DOA Algorithms:

In order to validate the selected DNN, it is imperative to compare its performance against estab-
lished algorithms widely used for DOA estimation. The algorithms employed for this comparison
encompass MUSIC and SRP-PHAT algorithms. To ensure a fair and unbiased assessment, the
data utilized for evaluating these algorithms is identical to the the data used for the test set during
DNN selection. For this task, accuracy will be the only evaluation metric utilized.

Table 4.17 provides a comprehensive overview of the DOA estimation accuracy achieved by
the MUSIC algorithm, SRP-PHAT algorithm, and the chosen MLP for classification tasks involv-
ing 6 classes, 12 classes, and 36 classes. Remarkably, the MLP demonstrates superior performance
compared to the algorithms employed. Furthermore, it is noteworthy that the MUSIC algorithm

outperforms the SRP-PHAT algorithm in terms of accuracy.

Table 4.17: Recorded accuracy of the chosen MLP, MUSIC algorithm, and SRP-PHAT algorithm
for different classification tasks.

Number of Classes
Algorithm/Model 6 12 36
MLP 95.27% 90.61% 80.52%
MUSIC 92.31% 84.03% 61.66%
SRP-PHAT 73.67% 70.67% 44.43%
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Chapter 5

Impact and Exploitation:

This chapter provides an overview of the current stage of the project’s development cycle and
explores its potential impact on a range of fields and applications, including speech processing,
virtual reality, and antenna arrays. In addition, it examines various strategies that could be em-

ployed to maximize the project’s impact in these areas.

5.1 Position in the Development Cycle:

Research on machine learning-based DOA estimation is a relatively recent development [43]. Tra-
ditionally, DOA estimation has relied on classical methods that involve multiple stages of estima-
tion, such as determining the number of sources before estimating DOA. In these classical meth-
ods, inaccuracies in any of the intermediate stages can negatively impact the final DOA estimation.
However, with the increasing prevalence of DL in signal processing, researchers have turned to
DL methods for DOA estimation. These methods offer improved performance and generalization
with fewer stages and less computational burden.

Currently, in the research and development cycle, this project is testing and developing dif-
ferent signal processing and DL methods to enhance and produce promising outcomes for the
problem of DOA estimation. Furthermore, companies such as Amazon, who have virtual assistant
products like Alexa, are already investing in research and development to improve their speaker
localization using DL methods [44]. This project aligns well with the current demand for efficient
and robust methods for speaker localization and DOA estimation, which is driving researchers

to employ cutting-edge techniques, such as deep neural networks, to accelerate technological ad-
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vancement.

5.2 Impacts:

The impact of the research presented in this thesis spans across several fields, with one key appli-
cation being speech separation that relies on DOA estimation algorithms. Such algorithms can be
used in a wide range of applications, including virtual assistants, hearing aids [12], surveillance
[7], and more. The findings of this project also have significant implications for virtual and aug-
mented reality, where DOA estimation algorithms are used to create immersive audio experiences.
By utilizing accurate DOA estimation methods, users can have a more engaging experience with
enhanced spatial awareness and a sense of presence [45]. The audio simulation methods used in
this research can also aid in the development of these algorithms for improved user experience.
Additionally, DOA estimation is not limited to acoustics and can be utilized in antenna systems
to focus antenna arrays on specific directions, thereby improving signal quality and reducing in-
terference [46]. DOA estimation methods are also essential in radar and sonar for tracking and

navigation applications [3].

5.3 Methods to Influence:

This project enhances the awareness of governments and policymakers about the current state of
technology and its potential uses, including both ethical and unethical applications. The project
aims to encourage regulations that mitigate the risks of unethical technology use. The research
presented in this thesis also underscores the significance of interdisciplinary research by utilizing
signal processing and DL techniques to tackle current issues. The project has potential benefits
for companies involved in producing virtual assistants, particularly Apple and their latest product,
Homepod. The Homepod uses beamforming methods for speaker localization and environment
sensing to optimize its tweeter array for superior sound production [47]. Therefore, our findings
will assist these companies in advancing their technology further.

To translate the impacts into real-world applications, further research is required to enhance
the algorithms and DNN architectures to consider a wide range of scenarios. I is believed that
collaboration among experts from diverse sectors is crucial to advance the development to cre-

ate more autonomous and intelligent products. Therefore, the allocation of additional funding to

40



CHAPTER 5. IMPACT AND EXPLOITATION: 41

facilitate these collaborations and to support the further development & testing of DOA estima-
tion methods using DNNs is proposed. The expansion of the virtual assistant industry, which is
expecting a market growth by USD 4.12 billion [48],coupled with the growing demand for more
accurate DOA estimation techniques across various applications, increases the likelihood of se-
curing funding for projects involving this technology. This collaboration will propel the product
into the advanced stages of the development cycle, where it can undergo rigorous testing before

being deployed to end-users.

41






Chapter 6

Conclusion:

This chapter marks the culmination of the thesis, providing conclusions on the key findings. Ad-

ditionally, potential avenues for future research and extensions are discussed.

6.1 Conclusion:

In this thesis, the feasibility of DNNs for solving the problem of DOA estimation and source local-
ization was thoroughly investigated. Simulation tools to collect data and evaluate the performance
of DL models were utilized. Furthermore, the investigation encompassed an examination of fea-
ture extraction techniques, specifically utilizing spectral estimation with GCC-PHAT to improve
significant features from the input data. The experiments showed that a single HL. MLP achieved
the best performance on the simulated data for multiple classification tasks. Furthermore, we com-
pared the performance of the DNN with various DOA estimation algorithms and demonstrated that
the DNN consistently outperforms them, particularly in high resolution scenarios. Notably, in the
36-classes scenario, the DNN exhibited significantly superior accuracy compared to the MUSIC
algorithm by 18.86% and surpassed the SRP-PHAT algorithm by an impressive margin of 36.09%.
These results underscore the remarkable performance of the DNN, particularly in more challeng-
ing DOA estimation tasks. Additionally, an alternative approach involving regression MLP was
discussed, offering a fresh perspective on tackling the problem at hand. Overall, our findings
demonstrate the potential of DNNs for solving the challenging problem of DOA estimation and
source localization.

While the work presented in this thesis has added value to the field, it is acknowledged that the
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project is still in its early stages. Further investigations are necessary to ensure that our findings
are applicable to multiple source scenarios, which are more realistic, and to consider sources of
noise and interference. Additionally, it is important to incorporate more room geometries and

environments to enhance the generalizability of the DL models.

6.2 Future Work:

In future investigations, the potential for expanding the MLP by incorporating supplementary lay-
ers, or alternatively utilizing the MLP as an input to another DNN, arises. This can be leveraged
to predict beamforming weights, with the aim of effectively isolating the signal of interest from
interfering sources, thereby resulting in an enhanced SNR.The Capon’s minimum variance beam-
former, which has been previously discussed in the background chapter, stands out as a promising
choice for utilizing a DNN to predict its beamforming weights as it can provide better noise re-
duction and interference rejection compared to the delay-and-sum beamformer.

In prospective investigations, there is potential for deploying the MLP within a real-time sys-
tem to accurately predict the DOA of speech signals. However, to achieve this objective, it be-
comes necessary to fine-tune the original model, a process that entails recording real data for
refinement purposes. The collection of a substantial amount of data across various environments
assumes paramount importance, as it enables the model to exhibit efficient performance across di-
verse scenarios. This, in turn, facilitates the practical application of the model in real-life contexts,
such as intelligent virtual assistants.

In this study, the primary focus on DNNSs revolved around utilizing them for DOA estimation.
However, it is worth noting the existence of numerous pre-trained DNNs in various speech appli-
cations, trained on extensive datasets comprising both real and simulated data. These pre-trained
neural networks can be employed as feature extractors, wherein the last layer is removed, and
the output of the penultimate layer serves as input features for the DOA estimation DNN. This
approach not only aids in accentuating crucial features that traditional feature extraction meth-
ods may overlook but also serves as a dimensionality reduction technique by transforming a large

amount of data into a more compact representation.
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Appendix A

Tables Appendix

Table A.1: Simulation parameters used to create a room using PRA

’ ‘ Parameter Value ‘ ‘
Room Length 6 meters
Room Width 5 meters
Room Height 3 meters
Speed of Sound 343 meters per seconds

Reverberation Time

Maximum Images Order
Microphone Center’s Coordinates

0.45 seconds

1

(4,3,1.5) meters

Table A.2: Simulation parameters used to create a sound source using PRA

H Parameter Value H
Change in Distance 1 meter
Change in Azimuth Angle 1°

Table A.3: A comparison between sparse encoded categories and one-hot encoded categories.

Sparse  Encoded One-Hot Encoded Categories
Categories

Category Category 0 Category 1 Category 2
2 0 0 1

0 1 0 0

1 0 1 0
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Figure B.1: Illustration of an optimal data pipeline for DOA estimation using a MLP
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